À la fin de ce cours, vous saurez :
Please note that this course is available in english only.
Predictive modeling is a pillar of modern data science. In this field, scikit-learn is a central tool: it is easily accessible and yet powerful, and it dovetails in a wider ecosystem of data-science tools based on the Python programming language.
This course is an in-depth introduction to predictive modeling with scikit-learn. Step-by-step and didactic lessons will give you the fundamental tools and approaches of machine learning, and is as such a stepping stone to more advanced challenges in artificial intelligence, text mining, or data science.
The course covers the software tools to build and evaluate predictive pipelines, as well as the related concepts and statistical intuitions. It is more than a cookbook: it will teach you to understand and be critical about each step, from choosing models to interpreting them.
The training will be essentially practical, focusing on examples of applications with code executed by the participants.
The MOOC is free of charge, all the course materials are available at: https://inria.github.io/scikit-learn-mooc/
The authors of the course are scikit-learn core developers, they will be your guides throughout the training!
The course will cover practical aspects through the use of Jupyter notebooks and regular exercises. Throughout the course, we will highlight scikit-learn best practices and give you the intuition to use scikit-learn in a methodologically sound way.
The course aims to be accessible without a strong technical background. The requirements for this course are:
- basic knowledge of Python programming : defining variables, writing functions, importing modules
- some practical experience of the NumPy, Pandas and Matplotlib libraries is useful but not required. For a basic knowledge of these libraries, you can use the following resources : Introduction to NumPy and Matplotlib by Sebastian Raschka and 10 minutes to pandas.
Students' work in the course is assessed through quizzes after the lessons and programming exercises at the end of every modules.
An Open Badge for successful completion of the course will be issued on request to learners who obtain an overall score of 60% correct answers to all the quizzes and programming exercises.
Catégories
Catégories
Catégories
Catégories
Catégories
Hébergement de l'environnement d'exécution des notebooks Jupyter pour ce Mooc.
Suivez-nous sur Twitter @InriaLearnLab et n'hésitez pas à utiliser le hashtag #ScikitLearnMooc.
Vous êtes autorisé à :
Selon les conditions suivantes :
Attribution — Vous devez créditer l'oeuvre, intégrer un lien vers la licence et indiquer si des modifications ont été effectuées à l'oeuvre. Vous devez indiquer ces informations par tous les moyens raisonnables, sans toutefois suggérer que l'offrant vous soutient ou soutient la façon dont vous avez utilisé son oeuvre.
Vous êtes autorisé à :
Selon les conditions suivantes :